Wadge Hardness in Scott Spaces and Its Effectivization

نویسندگان

  • Verónica Becher
  • Serge Grigorieff
چکیده

We prove some results on the Wadge order on the space of sets of natural numbers endowed with Scott topology, and more generally, on omega-continuous domains. Using alternating decreasing chains we characterize the property of Wadge hardness for the classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar characterization holds for Wadge one-to-one and finite-to-one completeness. We consider the same questions for the effectivization of the Wadge relation. We also show that for the space of sets of natural numbers endowed with the Scott topology, in each class of the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge degrees of sets properly in that class. The length of these chains is the rank of the considered class, and each element in one chain is incomparable with all the elements in the other chain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Wadge hierarchy for second countable spaces

Wadge reducibility provides a rich and nice analysis of Borel sets in Polish zero dimensional spaces. However, outside this framework, reducibility by continuous functions was shown to be ill behaved in many important cases. We define a notion of reducibility for subsets of a second countable T0 topological space based on the notions of admissible representations and relatively continuous relat...

متن کامل

Antichains in the Wadge Order for Connected Spaces

For any non-totally disconnected Polish space, there is a family of c = 2א0 many Wadge incomparable finite level Borel subsets. If the space is additionally locally compact or locally connected, there is a family of 2 many Wadge incomparable subsets. In this note, we study the Wadge order for Polish spaces which are not totally disconnected. For a fixed Polish space, the Wadge order for the spa...

متن کامل

Variations on Wadge Reducibility Extended Abstract

Wadge reducibility in the Baire and Cantor spaces is very important in descriptive set theory. We consider Wadge reducibility in so called φ-spaces which are topological counterpart of the algebraic directed-complete partial orderings. It turns out that in many spaces the Wadge reducibility behaves worse than in the classical case but there exist also interesting examples of spaces with a bette...

متن کامل

Wadge Reducibility and Infinite Computations

Introduction Investigation of the infinite behavior of computing devices is of great interest for computer science because many hardware and software concurrent systems (like processors or operating systems) may not terminate. The study of infinite computations is important for several branches of theoretical computer science, including verification and synthesis of reactive computing systems [...

متن کامل

Borel and Hausdorff Hierarchies in Topological Spaces of Choquet Games and Their Effectivization

What parts of classical descriptive set theory done in Polish spaces still hold for more general topological spaces, possibly T0 or T1, but not T2 (i.e. not Hausdorff)? This question has been addressed by Victor Selivanov in a series of papers centered on algebraic domains. And recently it has been considered by Matthew de Brecht for quasi-Polish spaces, a framework that contains both countably...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical Structures in Computer Science

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015